Opublikowano Dodaj komentarz

Atom w ujęciu cywilnym i wojskowym – zastosowanie pierwiastków promieniotwórczych w życiu codziennym oraz w wojskowości

W dotychczasowym cyklu artykułów z serii #PostępAtomowy uwaga została poświęcona zastosowaniu pierwiastków promieniotwórczych w dziedzinie energetyki. Nie sposób uniknąć wrażenia, że w zbiorowej świadomości, takie właśnie zastosowanie tych pierwiastków wysuwa się na prowadzenie, zaraz obok użycia ich oraz ich izotopów w broni jądrowej, a samo określenie „promieniowanie” wzbudza w odbiorcach pewny niepokój. Takie postrzeganie zastosowania wspomnianych pierwiastków jest oczywiście niepełne, na co dzień większość z nas nie zdaje sobie sprawy, w jak wielu dziedzinach życia odkrycie zjawiska promieniotwórczości, a wraz z nim same pierwiastki promieniotwórcze znalazły zastosowanie.

Zastosowanie to można kwalifikować oraz dzielić według różnorakich kryteriów. Z punktu widzenia niniejszego artykułu zasadnym będzie dokonanie pobieżnej prezentacji zastosowania pierwiastków promieniotwórczych w dwóch kategoriach tj. w aspekcie wojskowym i cywilnym.

Wskazać należy, że głównym powodem zastosowania pierwiastków promieniotwórczych w życiu codziennym jest ich zdolność do wytwarzania promieniowania jonizującego, co wszak odróżnia je od innych pierwiastków i izotopów. Poza tą zdolnością, o ich wykorzystaniu może decydować miedzy innymi duża gęstość, np. w przypadku uranu, bądź inne właściwości chemiczno-fizyczne. 

Pierwiastki promieniotwórcze znalazły szerokie zastosowanie np. w medycynie. Wykorzystuje się je w aparaturze medycznej, takiej jak tomografia emisyjna pojedynczych fotonów (SPECT), pozytonowa tomografia emisyjna (PET), scyntygrafia[1]. Bez odkrycia zjawiska promieniowania nie istniałaby nowoczesna diagnostyka, pozwalająca de facto zajrzeć do ciała pacjenta, bez potrzeby stosowania metod chirurgicznych. 

Ponadto bez izotopów promieniotwórczych, np. Co60, niemożliwym była by radioterapia, pozwalająca leczyć zmiany nowotworowe. Tak radioterapię charakteryzuje WUM[2]: ,,Możemy wprowadzić do wnętrza nowotworu izotop, który emituje promieniowanie o dużej energii, ale o małym zasięgu. Zależy nam bowiem, żeby zniszczyć nieprawidłowe komórki, czyli uzyskać największy efekt terapeutyczny, ale w jak najmniejszym stopniu uszkodzić komórki zdrowe, aby nie wywoływać działań ubocznych”[3]. 

Warto nadmienić, że duża część światowej produkcji radiofarmaceutyków pochodzi z Polski, bowiem reaktor MARIA zajmuje między innymi produkcją tego typu specyfików[4]

Kolejnym ważnym działem naszego życia korzystającym ze zjawiska promenowania jest przemysł. Izotopy promieniotwórcze znalazły w nim jedno z najszerszych zastosowań. Są one stosowane w licznych detektorach emitujących wiązkę promieniowania i będących w stanie wykryć wady danego produktu lub konstrukcji Dla przykładu w/w miernikach grubości zastosowanie znalazł Am241. Znajdziemy je także w czujnikach dymu bądź aparaturze mierzącej przepływ cieczy w danym układzie. 

Promieniowanie jonizujące znalazło również zastosowanie w dezynfekcji, ponieważ jego niszczące działanie w stosunku do materii organicznej świetnie sprawdza się w eliminacji wszelkiego rodzaju patogenów oraz grzybów. Część pierwiastków promieniotwórczych wykorzystuje się w eksploracji kosmosu, zasilają one niektóre urządzenia wyniesione w przestrzeń kosmiczna, np. Pu238. Kolejną dziedziną, gdzie można znaleźć pierwiastki i izotopy promieniotwórcze to biologia molekularna, gdzie używa się ich, między innymi, jako znaczniki tak np. P32 [5]. Nawet uran, który kojarzony jest głównie bądź z bronią jądrową, bądź reaktorami atomowymi, znalazł również inne zastosowania. Tak bowiem używany był [6] on do barwienia szkła na zielono. Tak zwane szkło uranowe popularne było w XIX wieku, dzisiaj już dość rzadkie, a jego cechą charakterystyczna jest świecenie w promieniach ultrafioletu. Zubożony uran z kolei stosowany był jako balast w samolotach pasażerskich [7]. Izotopy promieniotwórcze znalazły również zastosowanie w/w geologii oraz archeologii, między innymi przy datowaniu skał bądź artefaktów metodami węglowymi oraz innymi.

Z przedstawionego krótkiego opisu zastosowań promieniowania w życiu codziennym, wyłania się obraz, na podstawie którego można założyć, że współczesny świat wyglądałby zupełnie inaczej, gdyby pierwiastków i izotopów promieniotwórczych nie było. 

Poza zastosowaniem cywilnym nie sposób nie wspomnieć o zastosowaniu militarnym tego typu pierwiastków. 

W tym kontekście na pierwszy plan zawsze wysunie się broń jądrowa. Jest to oczywiście uzasadnione tym, że właśnie tam izotopy promieniotwórcze znalazły najbardziej spektakularne zastosowanie, dając początek najsilniejszej broni, jaką dysponuje ludzkość. Tak naprawdę historia broni jądrowej zaczęła się wraz z odkryciem zjawiska promieniotwórczości, niemniej jej stworzenie zawdzięczamy projektowi pn. „Manhattan”. Pierwsza udana detonacja ładunku atomowego nastąpiła w 1945 roku, kiedy po raz pierwszy i jak na razie jedyny w historii wykorzystano ten typ uzbrojenia w warunkach bojowych. Kolejnym przełomem była detonacja ładunku termonuklearnego, tak zwanej bomby wodorowej, co nastąpiło w 1952 roku [8]. W latach 80. XX wieku ilości ładunków jądrowych na świecie osiągnęła prawie 100 tys. sztuk, od czasu zakończenia zimnej wojny do wybuchu wojny na Ukrainie [9] doszło natomiast do znacznego ograniczenia tego typu arsenału. Obecnie broń jądrową posiada 9 państw [10]. Poza bronią atomową w rozumieniu bomby jądrowej, izotopy promieniotwórcze, mogą znaleźć zastosowanie w tak zwanej brudnej bombie, której głównym celem jest skarżenie jak największego obszaru promieniowaniem. Ponadto w wojskowości zastosowanie znalazły różnego rodzaju czujniki oraz detektory, a zubożony uran wykorzystywany jest do produkcji pocisków i amunicji[11]. 

Warto również podkreślić, że wykorzystanie tego typu pierwiastków nie musi mieć jedynie charakteru ofensywnego. Wynika to z faktu, iż decydenci wojskowi zdali sobie dość szybko sprawę, że same pierwiastki promieniotwórcze mają także potencjał defensywny. Przykładem takiego zastosowania są chociażby nowoczesne pancerze czołgów skonstruowane z zubożonego uranu. Ich działanie skupia się na pochłanianiu energii kinetycznej wyzwolonej przez pociski uderzające w pancerz. Jednak działa to na zasadzie odmiennej od zwykłego rodzaju pancerza, ponieważ pancerz uranowy nie osłabia się po trafieniu, a wręcz przeciwnie staje się twardszy. Wynika to z tzw. efektu samo hartowania, który polega na tym, że w momencie uderzenia pocisku w pancerz, pod wpływem ciśnienia i wysokiej temperatury, uran twardnieje, co w efektywny sposób przekłada się na trwałość konstrukcji.

Innym militarnym wykorzystaniem energii atomowej są chociażby reaktory jądrowe służące do napędzania okrętów atomowych. Z racji na ich sposób działania, oraz uzyskiwane za ich pomocą wręcz nieograniczone zasoby energii, przy praktycznie zerowej generacji jakichkolwiek odpadów, czyni je wręcz niewidzialnymi. Tak naprawdę położenie tych okrętów jest wręcz niemożliwe do ustalenia dla strony przeciwnej. Ich jedyną wadą są tak naprawdę ludzie, gdyż to głównie oni wymagają okresowego uzupełniania zapasów. W tym miejscu warto również podkreślić, że oprócz okrętów podwodnych istnieją również jednostki nawodne które wykorzystują zasilanie energią atomową, jak na przykład rosyjski krążownik ciężki „Piotr Wielki”, czy chociażby amerykańskie lotniskowce klasy Nimitz. Jednak w tym wypadku działania takich jednostek są o wiele mniej opłacalne ze względu na ich dużo większą podatność na zniszczenie. Jest to również pewnego rodzaju problem gdyż zniszczenie takiego okrętu niewątpliwie będzie wiązało się ze skażeniem radiologicznym pewnego obszaru w miejscu, gdzie zostanie on utracony. Tym samym sprawia to, że zniszczenie takich jednostek jest dość często stawiane na równi z wykorzystaniem broni jądrowej.

Jak widać technologia nuklearna odgrywa niesamowitą rolę w naszym codziennym życiu. Dodając do tego kolejny etap ewolucji w postaci rozwoju sztucznej inteligencji należy stwierdzić, iż jest to niewątpliwie droga do przyszłości. Dlatego tym bardziej należy rozwijać tę sferę życia wspierając i realizując kolejne inwestycje z tej dziedziny. Dziękujemy Państwu za uwagę oraz zapraszamyndo obserwowania kolejnych artykułów z naszej serii #PostępAtomowy.

mgr Michał Kowalski, mgr Michał Krawczyk / 09.07.2024 r.  

[1] https://www.gov.pl/web/polski-atom/promieniowanie-jonizujace-w-medycynie

[2] Warszawski Uniwersytet Medyczny. 

[3] https://www.wum.edu.pl/node/17674

[4] Więcej o samym reaktorze na https://www.ncbj.gov.pl/reaktor-maria

[5] https://zpe.gov.pl/a/przeczytaj/DLCgsiUSG

[6] Głównie tlenki uranu.

[7] Zmieniło się to po katastrofie lotu El Al 1862 w 1992.

[8] Bomba tego typu to ładunek dwustopniowy, aby zainicjować reakcje termojądrową potrzebne jest uzyskanie ogromnej temperatury, którą zapewnia detonacja ładunku jądrowego.

[9] Od 2022 roku obserwuje się zwiększenie nakładów na produkcję nowego typu tej broni.

[10] Są to USA, Rosja, CHRL, Wielka Brytania, Francja, Indie, Pakistan, Korea Północna, oraz Izrael. W przypadku tego ostatniego kraju jego władze nigdy nie potwierdziły tej informacji.

[11] Z uwagi na jego dużą gęstość.

Opublikowano Dodaj komentarz

Proces utylizacji paliwa jądrowego

Omawiając problem związany z utylizacją paliwa jądrowego, przede wszystkim należy zwrócić uwagę na trzy kluczowe płaszczyzny związane z tym zagadnieniem: prawną, techniczną [1] i teoretyczną.

W tym miejscu należy podkreślić, że odpady jądrowe często nie są stricto odpadami w postaci fizycznej, tak jak np. rzeczy materialne. Główną przesłanką uznania za odpad promieniotwórczy jest ilość pierwiastków promieniotwórczych znajdujących się na danym przedmiocie. W praktyce można to opisać za pomocą przykładu brudnego dywanu, gdzie o tym, czy dywan zostanie przez nas uznany za odpad przeznaczony do wyrzucenia, zdecyduje ilość brudu, jaka na nim zalega. Oczywiście ten brud jest usuwalny, jednak pewna jego część może zostać wyczyszczona dość szybko, natomiast doczyszczenie innej części może trwać latami.

W niniejszym artykule zajmiemy się głównie płaszczyzną prawną. W przypadku dwóch pozostałych płaszczyzn zachęcamy do zapoznania się ze szczegółowymi, ogólnodostępnymi  opracowaniami na te tematy, gdyż są one niezwykle ciekawe.

Przechodząc do wskazanej płaszczyzny prawnej, należy podkreślić, iż z racji funkcjonowania w Polsce reaktora atomowego (reaktor Maria [2]), polskie prawo zmierzyło się z tą kwestią. Kluczowe regulacje w tym zakresie znajdują się przede wszystkim w art. 47 ustawy z dnia 19 listopada 2000 r. – Prawo atomowe [3]. Przepis ten w szczególności skupia się na wyszczególnieniu podziału odpadów promieniotwórczych, tworząc trzy kategorie:

  • odpady niskoaktywne,
  • odpady średnioaktywne,
  • odpady wysokoaktywne.

Dodatkowo ww. przepis podkreśla, że w ramach tych trzech głównych kategorii możliwe jest także tworzenie podkategorii ze względu na:

  • okres połowicznego rozpadu i stężenie promieniotwórcze zawartych w tych odpadach izotopów promieniotwórczych,
  • aktywność izotopów promieniotwórczych zawartych w ciekłych odpadach jądrowych (np. woda wykorzystywana w procesie funkcjonowania elektrowni atomowej).

Wracając do grupy odpadów, w przypadku odpadów z grupy niskoaktywnych należy wskazać wszystkie te odpady, w których stężenie radionuklidów długożyciowych oraz krótkożyciowych wynosi 400 Bq/g (bekereli) promieniowania alfa oraz kilkudziesięciu kilogramów Bq/g promieniowania gamma oraz beta. Przykładem takiego pierwiastka jest chociażby Cez-137, będący wynikiem rozpadu Uranu-235 oraz Plutonu-239. 

Natomiast same radionuklidy to jądra atomów, które są niestabilne i ulegają rozpadowi promieniotwórczemu, emitując promieniowanie w postaci cząstek alfa, beta lub promieniowania gamma. Ten proces prowadzi do przekształcenia radionuklidu w inny pierwiastek lub izotop, który może być stabilny lub również promieniotwórczy.

Tłumacząc to jeszcze na język “śmiertelników” oraz nawiązując do przykładu brudnego dywanu, można powiedzieć, że do tej grupy zaliczamy ten rodzaj brudu w postaci pierwiastków, którego maksymalny czas wyczyszczenia wynosi do 300 lat. W praktyce większość pierwiastków w tej grupie ulega wyczyszczeniu do 30 lat, jak chociażby przywołany Cez-137. Przedmiotem materialnym zaliczającym się do tej grupy odpadów może być chociażby odzież ochronna wykorzystywana przez pracowników elektrowni czy laboratoriów.

Do grupy odpadów średnioaktywnych zaliczamy w szczególności te pierwiastki, których poziom Bq/kg wynosi od 10^6 do 10^10, a średni czas rozpadu w dużym uproszczeniu wynosi od tysiąca do kilku tysięcy lat. W przypadku tej grupy nie stanowi on pierwszego miejsca w procesie kwalifikacji danego odpadu. Dla przykładu można wyróżnić chociażby Ameryk-241, który ulega rozpadowi po 432 latach. Materialnym przedmiotem zaliczającym się do tej grupy odpadów mogą być zużyte elementy konstrukcyjne reaktora jądrowego.

Ostatnią grupę odpadów stanowią odpady wysokoaktywne. Są to wszystkie te odpady, które zawierają duże ilości wysokoaktywnych radionuklidów. Określono dla nich orientacyjny poziom aktywności – 10^4 – 10^6 TBq/m^3. Ich czas rozpadu jest liczony w milionach lat, a najlepszym przykładem obrazującym tę kategorię jest zużyte paliwo jądrowe.

Oczywiście wszystkie te odpady są odpowiednio składowane stosownie do swojej kategorii. Odpady niskoaktywne składujemy w specjalnych składowiskach do kilkudziesięciu metrów. Z kolei odpady średnioaktywne składujemy od kilkudziesięciu do kilkuset metrów. Natomiast odpady wysokoaktywne najpierw poddajemy kilkudziesięcioletniemu okresowi chłodzenia, a w dalszym etapie przystępujemy do okresu ich składowania w podobnym zakresie jak odpady średnioaktywne.

Za ich składowanie odpowiedzialny jest w Polsce tzw. ZUOP, czyli Zakład Unieszkodliwiania Odpadów Promieniotwórczych, który składuje owe odpady w specjalnym składowisku w Różanie w woj. mazowieckim.

W tym miejscu należy podkreślić, że ilość odpadów promieniotwórczych wcale nie jest aż taka duża, jak nam się może wydawać. W przypadku produkcji energii elektrycznej za pomocą rozwiązań atomowych aż 90% odpadów stanowią odpady niskoaktywne i średnioaktywne. Dodatkowo roczna eksploatacja jednego bloku elektrowni atomowej o mocy 1 GW wyprodukuje 300 m^3 takich odpadów, zaś najmniejszy pojedynczy „50 m” basen olimpijski ma objętość 2500 m^3. Biorąc pod uwagę jeszcze kwestię tego, że większość owych odpadów ulegnie bezpiecznemu oczyszczeniu w ciągu kilkunastu lat, jest to rozwiązanie jak najbardziej bezpieczne.

Na sam koniec warto poruszyć jeszcze jeden katalog z wspomnianego art. 47 ustawy – Prawo atomowe, który wskazuje na elementy niekwalifikujące się do odpadów promieniotwórczych, a są to:

  • masy ziemne lub skalne przemieszczane w związku z wydobywaniem kopalin ze złóż,
  • odpady wydobywcze,
  • niezanieczyszczona gleba i inne materiały występujące w stanie naturalnym, wydobyte w trakcie robót budowlanych,
  • odpady w postaci osadów z oczyszczania ścieków przemysłowych zawierających naturalnie występujące izotopy promieniotwórcze o sumarycznym stężeniu promieniotwórczym izotopów Ra-226 i Ra-228 nieprzekraczającym 1000 kBq/kg,
  • ścieki przemysłowe zawierające naturalnie występujące izotopy promieniotwórcze o sumarycznym stężeniu promieniotwórczym izotopów Ra-226 i Ra-228 nieprzekraczającym 1000 kBq/m^3.

Jak widać, problem odpadów promieniotwórczych nie jest aż tak przerażający, jak mogłoby się to wydawać. Należy wręcz stwierdzić, że jest on kolejnym argumentem za realizacją inwestycji jądrowych. W szczególności jest to mocno widoczne, kiedy zaczniemy zestawiać to z tradycyjnymi rozwiązaniami związanymi z produkcją energii elektrycznej, które to produkują o wiele więcej zanieczyszczeń niż opisywane. 

Mgr Michał Krawczyk / 25.06.2024 r.

[1] https://energetyka24.com/atom/co-zrobic-z-odpadami-z-polskiej-elektrowni-jadrowej-oto-mozliwosci 

[2] zob.: https://www.ncbj.gov.pl/reaktor-maria

[3] Dz.U. z 2023 r. poz. 1173 z późn. zm. [4] https://swiadomieoatomie.pl/Energetyka-jadrowa/Materialy-eksperckie/Materialy-problemowe/Postepowanie-z-wysokoaktywnymi-odpadami-promieniotworczymi

Opublikowano Dodaj komentarz

Uran jako paliwo dla elektrowni jądrowej – wydobycie, wzbogacanie, zasoby i produkcja w Polsce i na świecie

We wcześniejszych artykułach publikowanych w ramach naszej Kampanii #PostępAtomowy przybliżyliśmy mankamenty prawne procesu inwestycyjnego oraz koszty budowy i eksploatacji elektrowni atomowej. Załóżmy, że nasza elektrownia jest już gotowa do uruchomienia. Jednak by to nastąpiło, potrzebujemy odpowiedniego paliwa. Takowym jest uran – a konkretnie wzbogacony uran. Wyróżnia się kilka metod wzbogacania uranu. Te z kolei zależą od rodzaju reaktora atomowego zastosowanego w elektrowni jądrowej. Wskazuje się, że najważniejsze znaczenie dla gospodarki mają reaktory lekkowodne. Rozważania na ten temat wykraczają jednak poza granice niniejszego opracowania i naszych zainteresowań badawczych, wobec czego zachęcamy do zapoznania się ze literaturą specjalistyczną. W dużym skrócie, wzbogacanie uranu polega na jego przemianie – wykorzystując różnicę w ciężarze izotopów: rozszczepialnego 235U i nierozszczepialnego 238U – które prowadzi do otrzymania wzbogaconego tlenku uranu, który zostaje następnie sproszkowany i sprasowany do postaci pastylek[1]. Taki uran może już służyć za paliwo dla naszej elektrowni jądrowej. 

Czym jednak jest sam uran? Jest to oczywiście pierwiastek chemiczny, który wśród pierwiastków występujących naturalnie na Ziemi ma największą liczbę atomową[2]. Pozyskujemy go z rud uranowych, z których najbardziej znaną jest smółka uranowa, składająca się w 95% z tlenku uranu i występująca nieraz w postaci wielotonowych bloków. Większość pozostałych rud zawiera niestety znacznie mniej uranu. Wydobycie staje się opłacalne, gdy tona rudy zawiera co najmniej kilka kg uranu. Wydobycie rudy uranowej prowadzone jest tradycyjnymi metodami odkrywkowymi i podziemnymi, w zależności od głębokości zalegania i rodzaju złoża. Ruda wydobyta w kopalniach lub odkrywkach zostaje najpierw poddana dalszej obróbce[3]. 

Największe zasoby tego surowca znajdują się na terenie Australii, Kazachstanu, Kanady, Rosji i Namibii. Z kolei największym producentem (wydobywcą) uranu na świecie jest Kazachstan i spółka Kazatomprom[2]. Obecnie rozpoznane zasoby paliw jądrowych przy umiarkowanym wzroście popytu wystarczą na około 100 lat[4]. Również w Polsce występują złoża uranu – głównie na Dolnym i Górnym Śląsku, w Górach Świętokrzyskich oraz w Górach Izerskich, zostały one jednak w znacznym stopniu wyeksploatowane na potrzeby ZSRR do lat 50. XX wieku[2], [5], [6]. 

Jak wskazano w serwisie gov.pl, aktualnie zidentyfikowane zasoby uranu w Polsce szacuje się na około 7 tys. ton. Planowana w Polsce elektrownia atomowa ma mieć dwa lub trzy reaktory o łącznej mocy co najmniej 3000 MW. Wykorzystanie w niej zidentyfikowanych krajowych zasobów uranu pozwoliłoby na produkcję energii przez ok. 56 lat[7]. Wskazuje się również na możliwość alternatywnego pozyskiwania uranu, np. z miedzi lub hałd pogórniczych. Jednakże kwestia tego skąd Polska rzeczywiście będzie pozyskiwała paliwo do budowanej elektrowni atomowej pozostaje – jak się wydaje – w warstwie planowania. Na liście potencjalnych dostawców są Szwecja, USA i Kanada. Jednakże konkretów w tym zakresie brak.

Podsumowując. Budowa elektrowni atomowej to jedno, a jej rzeczywiste działanie to drugie; aby to umożliwić potrzebne jest odpowiednie paliwo w postaci wzbogaconego uranu. W przypadku polskiej elektrowni atomowej, wydawałoby się, że ustalenie sieci dostawców tego surowca jest sprawą priorytetową – niezależne od tego, że aktualnie jesteśmy na początkowym etapie inwestycji – kwestia ta jednak jest na tyle rozmyta, że pozostaje mieć nadzieję na jej rozstrzygnięcie jeszcze przed wybudowaniem samej elektrowni.

Mgr Dominik Kowal / 28.05.2024 r.

[1] https://nuclear.pl/podstawy,cykl2,wzbogacanie-i-obrobka-uranu,0,0.html;

[2] https://pl.m.wikipedia.org/wiki/Uran_(pierwiastek);

[3] https://nuclear.pl/podstawy,cykl1,wydobywanie-i-przerob-rudy-uranu,0,0.html;

[4] https://www.cire.pl/strony/paliwo-do-elektrowni-jadrowych

[5] https://www.kopalniapodgorze.pl/;

[6] F. Springer, Miedzianka. Historia znikania, wyd. Karakter, 2022;[7] https://www.gov.pl/web/polski-atom/na-ile-lat-wystarczy-polskiego-uranu.